人工智能制造業應用場景
從應用層面來看,一項人工智能技術的應用可能會包含計算智能、感知智能等多個層次的核心能力。工業機器人、智能手機、無人駕駛汽車、無人機等智能產品,本身就是人工智能的載體,其硬件與各類軟件結合具備感知、判斷的能力并實時與用戶、環境互動,無不是綜合了多種人工智能的核心能力。
例如,在制造業中被廣泛應用的各種智能機器人:分揀/揀選機器人,能夠自動識別并抓取不規則的物體;協作機器人能夠理解并對周圍環境做出反應;自動跟隨物料小車能夠通過人臉識別實現自動跟隨;借助SLAM(simultaneous localization and mapping,同步定位與地圖構建)技術,自主移動機器人可以利用自身攜帶的傳感器識別未知環境中的特征標志,然后根據機器人與特征標志之間的相對位置和里程計的讀數估計機器人和特征標志的全局坐標。無人駕駛技術在定位、環境感知、路徑規劃、行為決策與控制方面,也綜合應用了多種人工智能技術與算法。
目前制造企業中應用的人工智能技術,主要圍繞在智能語音交互產品、人臉識別、圖像識別、圖像搜索、聲紋識別、文字識別、機器翻譯、機器學習、大數據計算、數據可視化等方面。下文則總結制造業中常用的八大人工智能應用場景。
場景一、智能分揀
制造業上有許多需要分撿的作業,如果采用人工的作業,速度緩慢且成本高,而且還需要提供適宜的工作溫度環境。如果采用工業機器人進行智能分揀,可以大幅減低成本,提高速度。
以分揀零件為例。需要分撿的零件通常并沒有被整齊擺放,機器人雖然有攝像頭可以看到零件,但卻不知道如何把零件成功地撿起來。在這種情況下,利用機器學習技術,先讓機器人隨機進行一次分撿動作,然后告訴它這次動作是成功分撿到零件還是抓空了,經過多次訓練之后,機器人就會知道按照怎樣的順序來分撿才有更高的成功率;分撿時夾哪個位置會有更高的撿起成功率;知道按照怎樣的順序分撿,成功率會更高。經過幾個小時的學習,機器人的分撿成功率可以達到90%,和熟練工人的水平相當。
場景二、廠房安全
基于機器視覺的人工智能模型, 門口快速辨別廠房是否存在安全問題, 搭配無人機, 定時巡檢, 可以確保廠房24小時安全。 人工智能模型, 可以快速分辨是否存在火災風險, 是否存在漏氣, 是否存在危險生產, 例如沒有佩戴安全頭盔等等。
場景三:基于聲紋的產品質量檢測與故障判斷
利用聲紋識別技術實現異音的自動檢測,發現不良品,并比對聲紋數據庫進行故障判斷。根據聲音的自動檢測,可以發現產品是否處在亞健康狀態,人工智能及時發出異常警告,企業可以及時維修,及時更換零件。例如火力發電廠的發電模組,風力發電廠的風機,電梯等。
場景四:智能決策
制造企業在產品質量、運營管理、能耗管理和刀具管理等方面,可以應用機器學習等人工智能技術,結合大數據分析,優化調度方式,提升企業決策能力。
例如,一汽解放無錫柴油機廠的智能生產管理系統,具有異常和生產調度數據采集、基于決策樹的異常原因診斷、基于回歸分析的設備停機時間預測、基于機器學習的調度決策優化等功能。通過將歷史調度決策過程數據和調度執行后的實際生產性能指標作為訓練數據集,采用神經網絡算法,對調度決策評價算法的參數進行調優,保證調度決策符合生產實際需求。
場景五:數字孿生
數字孿生是客觀事物在虛擬世界的鏡像。創建數字孿生的過程,集成了人工智能、機器學習和傳感器數據,以建立一個可以實時更新的、現場感極強的“真實”模型,用來支撐物理產品生命周期各項活動的決策。在完成對數字孿生對象的降階建模方面,可以把復雜性和非線性模型放到神經網絡中,借助深度學習建立一個有限的目標,基于這個有限的目標,進行降階建模。
例如,在傳統模式下,一個冷熱水管的出水口流體及熱仿真,用16核的服務器每次運算需要57個小時,進行降階建模之后每次運算只需要幾分鐘。
場景六:創成式設計
創成式設計(Generative Design)是一個人機交互、自我創新的過程。工程師在進行產品設計時,只需要在系統指引下,設置期望的參數及性能等約束條件,如材料、重量、體積等等,結合人工智能算法,就能根據設計者的意圖自動生成成百上千種可行性方案,然后自行進行綜合對比,篩選出最優的設計方案推送給設計者進行最后的決策。
創成式設計已經成為一個新的交叉學科,與計算機和人工智能技術進行深度結合,將先進的算法和技術應用到設計中來。得到廣泛應用的創成式算法包括:參數化系統、形狀語法(Shape Grammars(SG))、L-系統(L-systems)、元胞自動機(Cellular Automata(CA))、拓撲優化算法、進化系統和遺傳算法等。
場景七:需求預測,供應鏈優化
以人工智能技術為基礎,建立精準的需求預測模型,實現企業的銷量預測、維修備料預測,做出以需求導向的決策。同時,通過對外部數據的分析,基于需求預測,制定庫存補貨策略,以及供應商評估、零部件選型等。
例如,為了務實控制生產管理成本,美國本田公司希望能夠掌握客戶未來的需求會在何時發生,因此將1200個經銷商的客戶銷售與維修資料建立預測模型,推算未來幾年內車輛回到經銷商維修的數量,這些資訊進一步轉為各項零件預先準備的指標。該轉變讓美國本田已做到預測準確度高達99%,并降低3倍的客訴時間。